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Abstract. The isothermal aging of the asymmetry induced in the disordered dielectric crystal
KTa1−xNbxO3 (x = 0.027) submitted to the biasing electric field E , is investigated. To this end, the
response of the complex dielectric constant to infinitesimal field changes δE, applied to the sample after
a variable aging delay, has been measured for different magnitudes of E and after different aging delays.
Two different experimental procedures have been used: in both cases the response strongly depends on the
time spent under field. For short aging delays, the response has a strong contribution proportional to δE
and a weak quadratic contribution proportional to (δE)2. As time elapses, the linear and the quadratic
contributions age in opposite ways: the former decreases whereas the latter increases. This paradoxical
behaviour is analyzed in the framework of a model which attributes aging and the related effects (rejuve-
nation, memory) to the evolution of polarization domain walls: the decrease of the linear contribution is
related to the decrease of the total wall area, while the increase of the quadratic term is attributed to wall
reconformations.

PACS. 61.43.-j Disordered solids – 77.22.Gm Dielectric loss and relaxation

1 Introduction

In many materials some properties or susceptibilities, such
as the elastic or the dielectric constants, depend on the
thermodynamic history of the studied sample. This means
that the value of the physical parameter under study at
a given instant is a function of the manner how the tem-
perature, the applied field or any relevant parameter have
varied in the past. However, several cases have to be dis-
tinguished.

For instance, in some compounds, particular chemi-
cal bonds may progressively be broken while other may
be formed, therefore changing most properties of the ma-
terial. This is chemical aging. It may occur in biological
tissues or organic materials and it is often irreversible.

Another situation is the one of materials which contain
some type of disorder and/or frustration which are put
out of equilibrium by fast cooling (quenching) through
a phase transition. In these materials, when all thermo-
dynamic parameters are fixed (i.e. temperature, electric
or magnetic fields...), as time elapses the sample tends
towards equilibrium, as shown by the history dependent
evolution of some susceptibility. This is physical aging.
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It is reversible by annealing the sample above the tran-
sition temperature. This is a very strong advantage for
experimentalists since different out-of-equilibrium states
can be easily studied, by simply changing the cooling pro-
cedure in several runs achieved on the same sample. Spin
glasses [1–4] and disordered dielectric [5–9] are archetypes
of these latter materials.

In the past few years, several series of experi-
ments [5,10,11] performed on a family of disordered di-
electrics have shown that some of these materials are very
good candidates for an extensive study of aging. Indeed,
under certain stoechiometric conditions, some of them un-
dergo a phase transition at temperature Ttr, between the
paraelectric phase (T > Ttr) and the disordered ferro-
electric phase (T < Ttr) [12,13]. It was first observed
that the time decrease of the dielectric constant at fixed
temperature below Ttr, strongly depends on the cooling
rate from the high temperature phase to the low tem-
perature one [14]. In addition to this standard isother-
mal aging, more subtle phenomena were put in evidence:
controlled temperature changes induce variations oppo-
site to aging (rejuvenation) and restoration of aging after
it has apparently vanished (memory). Moreover, since the
low temperature phase is ferroelectric, even if disordered,
it is expected that the biasing electric field modifies the
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conditions of aging. This has been experimentally con-
firmed [15,16].

However, the biasing field cannot be considered just
as an additional parameter, playing a role analogous to
the one played by the temperature. Actually, the electric
field being a vector, it modifies the sample symmetry when
applied, while a temperature change does not. Indeed, as
more precisely described in the next section, the ferroelec-
tric phase that occurs below Ttr is made up of randomly
oriented ferroelectric domains. In absence of field the po-
larization averaged over all the sample volume is equal to
zero; in that case a temperature change does not affect
the probability distribution among the domains and does
not induce a macroscopic polarization. On the contrary,
the biasing field favors some domains and penalizes oth-
ers, according to their own polarization. As a consequence,
the macroscopic polarization is no longer null: the sample
becomes polarized along the field and the system (sample
+ field) has the symmetry of a polar vector.

To study the susceptibility of this system one must
investigate its response to small variations of the static
electric field E. To this end, one should remember that
the lower symmetry induced by the biasing field implies
that the dielectric response to the small electric step alge-
braically added to E reads

δε = ε(E + δE)− ε(E) = A(E) δE +
1
2
B(E) (δE)2 + . . . ,

(1)
where all the coefficients of the odd terms, such as A, are
equal to 0 for E = 0. For the sake of simplicity, time is
omitted in (1) but, since the sample ages, both the com-
plex coefficients A and B do depend on time and are there-
fore subject to aging. The main purpose of the present ar-
ticle is to study the time dependence of these coefficients
or, equivalently, how the asymmetry induced by the field
ages. A brief account of preliminary experiments achieved
on KTa1−xNbxO3 has been already published [17]. We re-
port here on new experiments performed on an extended
aging duration, and following a new procedure. Moreover,
the results are analyzed in terms of the so-called domain
wall model. The long aging lapse makes possible a very
precise determination of the time dependence of the two
coefficients A and B. On the other hand, the comparison
of the data obtained by the means of the two different pro-
cedures provides us with very useful information to refine
the model which attributes the time-dependent part of the
dielectric constant to the evolution of the polarization do-
main walls [18]. The article is organized as follows. The
characteristics of the sample and the procedures used are
first given. Then the data are reported and briefly com-
mented. Finally, the domain wall model is presented and
compared with our results.

2 Experimental details

At low temperatures, the pure potassium tantalate KTaO3

has the cubic perovskite structure with the tantalum
ions Ta5+ surrounded by the oxygen octahedral shell. As

the temperature is lowered, the correlation between the
displacements of the Ta5+ ions inside the oxygen shell
increases, leading to a strong increase of the dielectric
constant ε. However, as a consequence of quantum fluctu-
ations, ε does not diverge, even at 0 K, and the ferroelec-
tric transition is aborted. This is the reason why KTaO3 is
sometimes termed as “incipient” ferroelectric. Substitut-
ing a fraction x (x ≥ xc

∼= 0.008) of tantalum ions Ta5+

by niobium ions Nb5+ allows the ferroelectric transition
to occur at the temperature Ttr which, depending on x,
is in the range 30–40 K. The lattice of the so consti-
tuted potassium niobotantalate KTa1−xNbxO3 has then
the cubic symmetry [19]. Below Ttr, the two species exhibit
very different dynamics. On the one hand, the Nb5+ ions
are frozen in off-center positions and constitute electric
dipoles located on random sites and oriented at random
along one of the eight [111] directions inducing a local
rhombohedral symmetry [13,19]. On the other hand, the
Ta5+ ions take off-center positions too, but they are not
completely frozen. Due to their mutual ferroelectric in-
teractions, the dipoles attached to the Ta5+ ions tend to
be all parallel. However, this trend towards a unique fer-
roelectric domain is hindered by the static random fields
generated by the Nb5+ ions. As a first consequence, the
sample is parceled into eight possible types of rhombohe-
dral polar domains which are equally probable in absence
of external electric field; the sample is hence macroscop-
ically cubic, its dielectric constant is isotropic, and the
total polarization is null. As a second consequence, the
flip of a Ta5+ dipole from an orientation to another, lead-
ing to the motion of the domain walls, is strongly slowed
down by the Nb5+ ions acting as random pinning sites;
this is at the origin of aging.

In the sample used in this work, the transition occurs
at Ttr = 35 K. According to the phase diagram [19], this
corresponds to a niobium concentration x = 0.027. It was
in the shape of a 0.877 mm thick plate, covered with thin
chromium electrodes.

In the disordered dielectric crystals, aging and related
phenomena strongly depend both on the thermal and on
the electrical histories of the sample. Therefore, we mea-
sured the complex capacitance of the sample C = C′−iC′′
as a function of time, after both the temperature and
the biasing electric field were changed in a controlled
manner. We carried out two series of experiments, which
are described below. The recorded data were then trans-
formed into the dimensionless complex dielectric constant
ε = ε′ − i ε′′, by simply multiplying them by the geo-
metrical factor α = 15.8 pF−1. The measurements were
performed using an impedance analyzer (Hewlett-Packard
4192A) at the fixed frequency f = 10 kHz for which the
accuracy is the best. This results from the balance be-
tween the magnitude of the phenomenon, which decreases
if the frequency increases, and the characteristics of the
impedance analyzer. The oscillating electric field applied
to the sample had an amplitude of about 1.2 kVm−1.

We adopted a single cooling process for all the ex-
periments reported here (Fig. 1a): after annealing above
the transition temperature, the sample was rapidly cooled
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Fig. 1. Schematic representation of both temperature and elec-
tric histories of the sample. (a) For the sample used in these
experiments, the transition temperature is Ttr = 35 K and the
plateau temperature was fixed to 11.2 K; (b) first procedure:
the plateau duration is fixed to tpl = 2000 s and the biasing
electric field is switched on at tE varying from 0 to 2000 s; (c)
second procedure: the switching time is fixed at tE = 1000 s
and the plateau duration tpl varies from 0 to 104 s. For both
procedures (b and c), E takes several values ranging from 0
to 7 kV m−1 and δEmax = 0.8 kVm−1. Actually, δEmaxis the
result of seven elementary steps of about 0.11 kV m−1 each.

(−4.3 Kmin−1
)

across Ttr down to 18 K, where the cool-
ing rate was reduced to −6 mK s−1. This cooling rate
was maintained during the lapse of time necessary for the
temperature to reach the value Tpl = 11.2 K. The sam-
ple underwent then an isothermal evolution at the plateau
temperature Tpl during a lapse of time tpl.

At the date t = tE (0 ≤ tE ≤ tpl, the origin of times
being the instant when the temperature reaches Tpl) a DC
voltage, positive or negative, was applied across the sam-
ple; the amplitude of the corresponding biasing electric
field E was always less than 7 kV m−1.

At the outcome of this process (isothermal evolution
at Tpl during tpl, under the biasing electric field E dur-
ing tpl − tE) we measured both the complex capacitance
at 10 kHz of the sample, C(tpl, E), and its changes after
infinitesimal increments (decrements) in the biasing elec-
tric field. The latter were obtained by increasing (decreas-
ing) step by step the electric field from E to E ± δEmax.
Each step had the amplitude δE ≈ 0.11 kVm−1, and
the maximum value δEmax was about 0.8 kVm−1; this
is small enough to be considered as infinitesimal [20] and

the corresponding changes in the dielectric constant co-
incide therefore with the derivative (∂ε/∂E)(tpl, E). The
effects of an infinitesimal increase and of an infinitesimal
decrease in E were recorded in two independent experi-
ments and the sample was annealed above Ttr before each
of these experiments. In other words, we measured sepa-
rately the right hand side and the left hand side of the
derivative (∂ε/∂E)(tpl, tE). On the other hand, both ε
and (∂ε/∂E) were generally recorded in a duration short
enough to guaranty that no measurable aging of the mate-
rial occurs during the measurement process. Actually, this
condition is not exactly fulfilled when the measurement of
(∂ε/∂E) takes place immediately after the biasing electric
field is applied (i.e., for tE = tpl). Indeed, setting up an
electric field in KTN induces rejuvenation, immediately
followed by a fast evolution of the dielectric constant to-
wards a new equilibrium state. Consequently the system
rapidly ages and, although the measurement of (∂ε/∂E)
is completed in a few seconds, the aging occurring during
this lapse of time significantly affects the results. In that
case, we recorded the effects of aging, namely ε(t ≥ tE , E),
in an independent experiment and we subtracted the cor-
responding data from ε (t ≥ tE , E + δE).

We performed two series of experiments. First, the
plateau duration tpl was fixed to 2000 s, whereas the bi-
asing electric field was switched on at the date t = tE
varying in the range 0–2000 s (Fig. 1b). In the second se-
ries of experiments, tE was maintained to 1000 s and the
plateau duration varied in between 103 and 104 s (Fig. 1c).
In both cases, the data recorded at t = tpl were analyzed
in terms of the waiting time tpl − tE .

3 Results

Before we present our results, we recall that the dielectric
constant being a complex quantity, the coefficients A and
B in the expansion (1) are complex too. It is expected (and
experimentally shown below) that the real parts A′ and
B′ on the one hand, and the imaginary parts A′′ and B′′
on the other hand, have respectively the same behaviours.
Therefore, as a shorthand, when we say that A (resp. B)
has some property, we mean that A′ and A′′ (resp. B′ and
B′′) possess the same property.

As an example of the response of KTN to a biasing
electric field, we show in Figure 2 the dielectric constant
(real part) as a function of time, after the sample has un-
dergone the sequence of events summarized in Figure 1c.
These experimental results correspond to tpl = 5000 s,
tE = 1000 s, and E = 3.4 kV m−1. Moreover, we show
in the inset an expanded view of the data recorded at
t = tpl, for δEmax = 0.8 kV m−1 (open circles) and
δEmax = −0.8 kV m−1 (open triangles). These latter
data, recorded in two independent experiments, were then
gathered in a single file corresponding to the “experimen-
tal derivative” (∂ε/∂E)(tpl, tE). In Figure 3a are displayed
the results for the fixed aging delay tpl − tE = 1000 s and
for different magnitudes of the biasing electric field (sketch
of Fig. 1b). We show also in Figure 3b the variations of
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Fig. 2. Measured aging of the real part of the dielectric con-
stant, using the experimental procedure 2 (Fig. 1c). The bias-
ing electric field (E = +3.4 kVm−1) is applied at tE = 1000 s
and the plateau duration is tpl = 5000 s. Inset: expanded view
of the data recorded at t = tpl for δE varying by steps of
+0.11 kV m−1 (open circles) or −0.11 kV m−1 (open trian-
gles).

ε′, recorded under the field E = 3.4 kV m−1, for different
values of the aging delay tpl − tE (sketch of Fig. 1c). We
observed similar behaviour for the imaginary part ε′′.

It is clear from Figure 3 that the variations of ε
strongly depend both on the magnitude of E and on the
time spent under field. Moreover, in both cases the varia-
tions are parabolic (see the solid lines in Fig. 3) and the
expansion of the derivative (∂ε/∂E) should therefore in-
clude a term proportional to (δE)2. It is interesting to no-
tice in Figure 3b that this B term evolves as time elapses
since the variations, which exhibit a large linear compo-
nent A for tpl−tE = 100 s, become almost quadratic when
tpl − tE = 9 × 103 s.

To quantify this behaviour, we have computed the best
fit to the data recorded at the outcome either of the first
(Fig. 1b) or of the second process (Fig. 1c), using the ex-
pansion given by (1), limited to second order in δE. We
show in Figure 4 the variations of both A and B against
the delay tpl − tE , for E = 3.4 kVm−1. Immediately after
the biasing electric field is applied, the linear coefficient
A takes a finite value whereas the quadratic one B van-
ishing small. As time elapses, A monotonously decreases,
whereas B rapidly increases. Note moreover that the aging
of the coefficients A and B does not depend on the real age
of the sample, given by tpl, but depends only on the time
spent under field. As already announced at the beginning
of this section, whatever the sequence of events, both the
real and the imaginary parts of each coefficient A or B
undergoes similar behaviours. This is also attested by the
best fits to the measured values of both A′ (tpl − tE) and
A′′ (tpl − tE) displayed in Figures 4a and 4b respectively
as solid lines. Both these curves were computed assuming
a power law of the form A = A0 − a [(tpl − tE) − t0]

α; in
both cases the best fits to the data where obtained with
a single value of the exponent α. This clearly means that
the same process is at work during the aging of the field-

Fig. 3. Measured changes in the real part of the dielectric con-
stant as a function of infinitesimal electric steps δE demon-
strating the influence of the biasing electric field and of the
delay on the experimental derivatives (∂ε/∂E): (a) at the out-
come of the aging procedure 1 (tE variable, tpl = 2000 s —
Fig. 1b) for tpl − tE = 1000 s and for different values of the bi-
asing electric field; (b) at the outcome of the aging procedure 2
(tE = 1000 s, tpl variable — Fig. 1c) for E = 3.4 kVm−1 and
for different values of the aging delay tpl − tE. The solid lines
are the best fits to the data using (1) limited to second order in
δE. For the sake of clarity, all the curves have been vertically
shifted.

induced asymmetry of the real and the imaginary parts of
the dielectric constant.

4 Discussion

From a microscopic viewpoint, aging in disordered ferro-
electrics can be attributed to the slow evolution of the
walls separating domains with different electric polariza-
tions [21,22]. The first success of this model is that it sat-
isfactorily describes the isothermal decrease (i.e. aging) of
both the real and the imaginary parts of the dielectric
constant ε (t) as time elapses. Indeed in the framework of
this model, the process responsible for the time-dependent
dielectric properties is supposed to be located in the thin
shell between two neighboring domains, the thickness of
which is of the order of the lattice parameter a. Therefore,
the effect on ε (t) must vary as the wall area of a domain
which is proportional to R2, where R is the mean size
of the domains, multiplied by the domain density n(R)
which is proportional toR−3. The time-dependent part of
the dielectric constant varies thus as R−1. Since the mean
size increases with time, one predicts that ε (t) should de-
crease; this is the observed behaviour [23].
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Fig. 4. Variations of the linear coefficient A ((a) real part,
(b) imaginary part) and of the quadratic coefficient B ((c)
real part, (d) imaginary part) as a function of the aging delay
tpl − tE, for E = 3.4 kVm−1. The data were deduced from the
fits displayed as solid lines in Figure 3. The open circles are for
the first procedure (Fig. 1b), whereas the full circles correspond
to the second procedure (Fig. 1c). The solid lines (a and b) are
the best fits to the data using A = A0 − a [(tpl − tE) − t0]

α.
The dashed lines (c and d) are guides for the eyes.

Since the material under study is ferroelectric, one
must take into account the role of the applied electric field.
Although there are eight possible directions of polarization
in KTN, we oversimplify the model and consider only two
types of domains, one with the polarization parallel to the
biasing field and the other antiparallel. The biasing elec-
tric field has opposite effects on them: those with their
polarization parallel to the field are favored and they grow
while the others necessarily slim. It is expected that this
simplified view retains the essential features.

When E = 0, the wall contribution to the dielectric
constant is given by:

ε (0) = K n (R, 0) R2, (2)

where n(R, 0) is the total density of domains in absence of
field. In that case, n(R, 0) can be split into two equal pop-
ulations, namely n+ (R, 0) = 1

2n (R, 0) and n− (R, 0) =
1
2n (R, 0), corresponding respectively to the two opposite
polarizations which have equal probabilities when E = 0.

When the field E is applied, it modifies both the sizes
and the density of domains. Let R+ (E) > R+ (0) = R
and R− (E) < R− (0) = R be the typical sizes of the do-
mains respectively parallel and antiparallel to the field,
and n+ (R+, E) and n− (R−, E) their densities. These
quantities are related by the volume constraint

n+ (R+, E) R3
+ + n− (R−, E) R3

− = 1. (3)

Then the walls contribution to the dielectric constant
reads:

ε (E) = K
(
n+ (R+, E) R2

+ + n− (R−, E) R2
−

)
. (4)

As for the volume contribution, it is not affected by the
field since the oscillating response of the domain cores is
not dependent on the polarization.

Both the size and the density of the domains being
scalar, they must be functions of scalar quantities built
with the electric field. Among them, the simplest are the
scalar product of the field by the dipolar momentum p
of a domain and the scalar product of the field by it-
self (in a one-dimensional model they read respectively
pE and E2). However, since the two domain populations
are equal before the field is applied, the term pE can-
cels by the sum over all the domains; therefore, it may
be omited in the calculation of even rank tensors such
as the dielectric constant. Consequently, we assume the
forms R± (E) = R

(
1 ± α± E2

)
for the two domain sizes,

where α+ and α− are two positive constants but not nec-
essarily equal. We assume moreover that n+ (R+, E) has
the form n+ (R+, E) = 1

2n (R, 0)
(
1 − β+ E2

)
, where β+

is a positive constant; (3) imposes then n− (R−, E) =(
1 − n+ (R+, E) R3

+

) · R−3
− .

As long as the field δE is small (that is to say α± ·
(δE)2 � 1, and β+ · (δE)2 � 1) the wall contribution to
the dielectric constant reads

ε (δE) = K n (R, 0) R2

×
{

1 +
[
(α+ − α−) − 1

2
(β+ − β−)

]
(δE)2

}
, (5)

where β− verifies 3 (α+ − α−)−(β+ − β−) = 0. Using now
the volume constraint (3) and the walls contribution (2)
for E = 0, one finds:

ε (δE) = ε (0) +
1
2
B (0) (δE)2 , (6)

where the coefficient B (0) is defined by B (0) =
−ε (0) (α+ − α−).
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Equation (6) clearly demonstrates that the weak field
adds a quadratic contribution to the dielectric constant,
as experimentally observed. Note moreover that the model
does not determine the sign of the coefficient B (0) but our
experimental results show that it is positive.

Let us now examine how (4) is modified when a weak
field δE is algebraically added to the strong field E. If δE
is small enough, ε (E + δE) can be expanded to second
order in δE, namely ε (E + δE) = ε (E) + A (E) δE +
1
2B (E) (δE)2. The field dependence of both coefficients A
and B are easily deduced from (2) and from the definitions
of R± and of n±. We found:

A (E) = ε (0)
[(

1 + α+E2
) (

2α+ − β+ − 3α+β+E2
)

+
(
1 − α−E2

) (
β− − 2α− − 3α−β−E2

)]
E. (7)

A (E) is an odd function of E. A trite but tedious calcu-
lation shows that B(E) is an even function of E. These
two results agree with symmetry considerations and they
were actually observed in our experiments.

This simple model for aging characterizes the domains
with a single parameter, the mean size R. It captures the
main features of aging but more subtle phenomena, such
as the behaviours of both A and B as time elapses or reju-
venation and memory, are beyond the possibilities of this
simplified version. In order to explain these experimental
facts some improvements of the model have to be done
which imply that new degrees of freedom play a role.

Indeed, due to the pinning sites generated by the Nb5+

ions, a domain wall is a rough surface that permanently
modifies through thermally activated local reconforma-
tions. This means that parts of the surface may occupy
two (or several) positions and go from one to another by
jumps over an energy barrier, the magnitude of which de-
pends on the size. The characteristic time of equilibration
for a reconformation of area l × l, with a < l < R is
τ = τ∞ exp

(
Γ l/a kBT

)
where Γ is a characteristic en-

ergy [16]. Consequently, all the reconformations of size
smaller than l (ta) = a kBT Γ−1 ln (ta/t∞) are in thermal
equilibrium at the temperature T after the aging time
ta [22].

If now a weak biasing field is applied to the system,
those reconformations with l ≤ l (ta) that were equili-
brated are suddenly pushed out of equilibrium and con-
tribute anew to ε which therefore increases. Indeed, what-
ever the perturbation, (a weak field step as well as a
weak temperature step) changes the domain frontiers.
Since many walls are pushed into new places, they be-
come young: their reconformations are not equilibrated.
Consequently, the dielectric constant, which has decreased
before the perturbation is applied, becomes larger and the
more the sample has aged the more the perturbation is ef-
ficient to rejuvenate it. Moreover, since the strong field
E completely disturbs the domains, the initial isothermal
aging (before t = tpl) is erased and is not relevant.

In the preceding discussion the time did not appear
explicitly since our purpose was only to describe the im-
mediate response to the weak field δE which occurs within

a very short time (a few seconds) on the aging scale. In-
deed, our experiments show that both the coefficients A
and B depend on time. Therefore they must read A (E, t)
and B (E, t) where, for simplicity, the plateau tempera-
ture Tpl is not written. In fact, an important point still
has to be explained: how aging modifies these field effects
and, more precisely, why the coefficient A (E) decreases
as the time elapses, while the coefficient B (E) increases.

We consider first the very short times. This means
that the weak increase δE is applied immediately (i.e.
within a few seconds) after the strong field E. During this
very short lapse the domain walls have not enough time
to evolve. Therefore it is equivalent to apply E + δE in
one step or E shortly followed by δE in two consecutive
steps. In the first case the derivatives can be calculated
from the curve ε (E) and the result is the “mathemati-
cal derivatives”. In the second case the first two “exper-
imental derivatives” A (E, 0) and B (E, 0) are provided.
From the preceding argument, they coincide with the two
corresponding “mathematical derivatives”. For the value
δEmax used in the experiments described above we have
B (E, 0) δEmax � A (E, 0) (see figure 4). This means that
at the very beginning of aging in the field E, the variation
of ε is practically linear with δE and (1) reduces to:

ε (E + δE, 0) ∼= ε (E, 0) + A (E, 0) δE. (8)

Then, the variation δε is dominated by the displacement
of the domain walls, independently of their detailed shape,
because the reconformations of the walls pass from an out-
of-equilibrium state to another (statistically equivalent)
out-of-equilibrium state.

We turn now towards longer times, taking into account
the evolution of the domain walls, in order to explain
why the real and the imaginary parts of A decrease while
they increase for B (see Fig. 4). If we assume that the
coefficients α± and β± appearing in (7) are only weakly
time-dependent, the quantity A (E, t) must vary, in a first
approximation, as ε (0, t). This explains why it decreases
with time. This result is obtained because the model for
A (E) takes into account only the changes which occur in
the mean characteristics of the domains (their size and
their density) and not in the fine structure of their walls.

This fine structure, to which rejuvenation is attributed,
is responsible for the behaviour of the coefficient B (E).
When the field δE is applied, forces are induced on the
walls which bring them into new positions where the re-
conformations are no longer in equilibrium. Then the walls
are young and they provide a larger contribution to ε.
Therefore, the coefficient B (E) measures rejuvenation.
This effect possesses two properties: (i) The fields δE and
−δE act in opposite directions, but in both cases the walls
become younger; consequently, the effect is an even func-
tion of δE; (ii) the longer the lapse of time t, the more
reconformations are equilibrated and the more reconfor-
mations are pushed out-of-equilibrium by δE; therefore,
the coefficient B is an increasing function of t = tpl − tE .
It is worthwhile to notice that an analogous effect was
observed with temperature jumps [11]: both δT and −δT
induce rejuvenation increasing with aging.
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5 Conclusion

The isothermal AC dielectric constant of a KTN sample
has been measured at 10 kHz as a function of time when
DC biasing fields were applied. These new experiments
performed over a large time scale provide us with a very
accurate characteristic time of aging and allow to show
that a unique microscopic process is at the origin of the
aging of the asymmetry of both the real and the imaginary
parts of the dielectric constant (see Fig. 4).

The similarity of the data obtained according to two
different procedures (corresponding to two different sam-
ple histories) shows that the field E erases the anterior
aging. This is a strong argument in favor of the domain
wall model since the field displaces the aged walls towards
new positions where they are younger. Moreover, both the
coefficients A (E, t) and B (E, t) of the expansion (1) age,
but in opposite — and somewhat — paradoxical ways.
The domain walls model allows also to explain this be-
haviour. Just as the biasing field, the small field δE in-
duces a shift and a subsequent rejuvenation of the walls.
The term A (E, t) δE is attributed to the variation of
the total area of the domain walls, through their average
characteristics (mean size and mean density) as they are
changed by δE; consequently, it decreases approximately
as ε (E, t). On the other hand, the term 1/2B (E, t) (δE)2

is related to the rejuvenation of the walls which are driven
onto new positions, whatever is the sign of δE, where they
are put out of local equilibrium; therefore, it increases the
dielectric constant.

All these results reinforce the appropriateness of the
domain walls model to the description of aging in disor-
dered ferroelectric phases. They also make clear why the
term A (E, t) δE, which characterizes the polar symme-
try induced by the field E, and the term 1/2B (E, t) (δE)2

vary in opposite manners.

References

1. E. Vincent, J.-P. Bouchaud, J. Hammann, F. Lefloch,
Philos. Mag. B 71, 489 (1995)

2. E. Vincent, V. Dupuis, M. Alba, J. Hammann, J.-P.
Bouchaud, Europhys. Lett. 50, 674 (2000)

3. L. Lundgren, P. Svedlindh, P. Norblad, O. Beckman, Phys.
Rev. Lett. 51, 911 (1983)

4. E. Vincent, J. Hammann, M. Ocio, J.-P. Bouchaud, L.E.
Cugliandolo, in Complex Behaviour of Glassy Systems,
Lecture Notes in Physics, Vol. 492, edited by M. Rubi
(Springer Verlag, 1997)

5. F. Alberici, P. Doussineau, A. Levelut, J. Phys. I 7, 329
(1997)

6. E.V. Colla, L.K. Chao, M.B. Weissman, D.D. Viehland,
Phys. Rev. Lett. 85, 3033 (2000)
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